Local Linear Convergence of ADMM on Quadratic or Linear Programs

نویسنده

  • Daniel Boley
چکیده

In this paper, we analyze the convergence of the Alternating Direction Method of Multipliers (ADMM) as a matrix recurrence for the particular case of a quadratic program or a linear program. We identify a particular combination of the vector iterates in the standard ADMM iteration that exhibits almost monotonic convergence. We present an analysis which indicates the convergence depends on the eigenvalues of a particular matrix operator. The theory predicts that ADMM should exhibit linear convergence when close enough to the optimal solution, but when far away can exhibit slow “constant step” convergence. This is illustrated with a convergence trace from linear program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs

We introduce a novel matrix recurrence yielding a new spectral analysis of the local transient convergence behavior of the Alternating Direction Method of Multipliers (ADMM), for the particular case of a quadratic program or a linear program. We identify a particular combination of vector iterates whose convergence can be analyzed via a spectral analysis. The theory predicts that ADMM should go...

متن کامل

ADMM for Convex Quadratic Programs: Linear Convergence and Infeasibility Detection

In this paper, we analyze the convergence of Alternating Direction Method of Multipliers (ADMM) on convex quadratic programs (QPs) with linear equality and bound constraints. The ADMM formulation alternates between an equality constrained QP and a projection on the bounds. Under the assumptions of: (i) positive definiteness of the Hessian of the objective projected on the null space of equality...

متن کامل

Linear Convergence of ADMM on a Model Problem

In this short report, we analyze the convergence of ADMM as a matrix recurrence for the particular case of a quadratic program or a linear program. We identify a particular combination of the vector iterates in the standard ADMM iteration that exhibits monotonic convergence. We present an analysis which indicates the convergence depends on the eigenvalues of a particular matrix operator. The th...

متن کامل

Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming*

In this paper, we aim to prove the linear rate convergence of the alternating direction method of multipliers (ADMM) for solving linearly constrained convex composite optimization problems. Under a mild calmness condition, which holds automatically for convex composite piecewise linear-quadratic programming, we establish the global Q-linear rate of convergence for a general semi-proximal ADMM w...

متن کامل

An Augmented Lagrangian Based Algorithm for Distributed NonConvex Optimization

This paper is about distributed derivative-based algorithms for solving optimization problems with a separable (potentially nonconvex) objective function and coupled affine constraints. A parallelizable method is proposed that combines ideas from the fields of sequential quadratic programming and augmented Lagrangian algorithms. The method negotiates shared dual variables that may be interprete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012